Cortical selective neuronal loss, impaired behavior, and normal magnetic resonance imaging in a new rat model of true transient ischemic attacks.
نویسندگان
چکیده
BACKGROUND AND PURPOSE New-definition transient ischemic attacks (TIAs) are frequent but difficult to diagnose because magnetic resonance imaging (MRI)-negative by definition. However, hidden underlying cell damage might be present and account for the reported long-lasting cognitive impairment after TIAs. Most prior rodent models of true TIA targeted the striatum or have not been fully characterized. Here we present the MRI, behavioral, and quantitative cell changes characterizing a new rodent model of true TIA targeting the more behaviorally relevant cerebral cortex. METHODS Fifteen-minute distal middle cerebral artery occlusion was performed in 29 spontaneously hypertensive rats allowed to survive for 7 to 60 days. Behavior was assessed serially using both global neurological and fine sensorimotor tests. Diffusion- and T2-weighted MRI was obtained 20 min postreperfusion and again 7 to 60 days later, and then changes in neurons and microglia were quantified across the middle cerebral artery territory using immunohistochemistry. RESULTS No MRI changes or pan-necrosis were observed at any time point, but patchy cortical selective neuronal loss affected 28/29 rats, regardless of survival interval, together with topographically congruent microglial activation that gradually declined over time. The Neuroscore was unchanged, but there was marked contralateral sensorimotor impairment, still recovering by day 28. CONCLUSIONS Our new rodent model mimicking true cortical TIA is characterized by normal MRI, but consistent cortical selective neuronal loss and microglial activation and long-lasting sensorimotor deficits. By causing selective neuronal loss, TIAs and silent microemboli might affect neuronal reserve, thereby increasing long-term cognitive impairment risk. Selective neuronal loss and microglial activation might represent novel therapeutic targets that could be detectable in vivo after TIAs using appropriate imaging tracers.
منابع مشابه
L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملQuantitative proton magnetic resonance imaging in focal cerebral ischemia in rat brain.
Proton magnetic resonance (MR) imaging has been recommended as a diagnostic tool for the detection of focal cerebral ischemia. We compared microscopic MR images of rat brains after focal cerebral ischemia with evidence of histological damage found on corresponding silver-impregnated or cresyl violet-stained brain sections. Ten male Wistar rats were subjected to permanent unilateral occlusions o...
متن کاملNeurological Evaluation and Diffusion-Weighted MRI Assessment of Patients with Transient Ischemic Attacks
Background: The risk of stroke after a transient ischemic attack (TIA) is high. Appropriately directed therapies may reduce this risk. However, sensitive means of detecting the presence of transient neuronal ischemia are lacking. Objective: To analyze the incidence of ischemic lesions detected by using diffusion-weighted MR imaging in patients suffering from transient ischemic attacks (TIA), an...
متن کاملNeuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population
Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...
متن کاملP18: Neuroprotective Effect of Safranal, an Active Ingredient of Crocus Sativus, in a Rat Model of Transient Cerebral Ischemia
Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L.) petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 46 4 شماره
صفحات -
تاریخ انتشار 2015